In this paper we consider strong bilevel vector equilibrium problems and introduce the concepts of Levitin–Polyak well-posedness and Levitin–Polyak wellposedness in the generalized sense for such problems. The notions of upper/lower semicontinuity involving variable cones for vector-valued mappings and their properties are proposed and studied. Using these generalized semicontinuity notions, we investigate sufficient and/or necessary conditions of the Levitin–Polyak wellposedness for the reference problems. Some metric characterizations of these Levitin–Polyak well-posedness concepts in the behavior of approximate solution sets are also discussed. As an application, we consider the special case of traffic network problems with equilibrium constraints.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên