Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 39(2020) Trang: 355-369
Tạp chí: Journal of Intelligent and Fuzzy Systems

Features play an important role in image processing. But as not all features are comparable, relative features emerged. From the beginning, low-level features, extracted by experts, have been employed to create difficult models for learning the problem of relative attribute. Knowing these models are limited in generality of their applicability, deep learning models can be employed instead of them. A deep artificial neural network framework has been suggested for the task of relative attribute prediction in this article. The paper suggests to use a convolutional artificial neural network for learning the mentioned attributes through a peripheral auxiliary layer, called also a ranking layer, which is able to learn how to rank the images. A suitable ranking cost function is used to train the whole network in an end-to-end manner. The suggested method through this paper is experimentally superior to the state of the art methods on some well-known benchmarks. The experimental results indicate that the proposed method is capable of learning the problem of relative attribute.

Các bài báo khác
Số tạp chí 343(2020) Trang: 31-43
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí LNICST 343(2020) Trang: 203-215
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí 41(2020) Trang: 201-210
Tạp chí: Espacios
Số tạp chí 90(2020) Trang: 2814-2822
Tạp chí: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Số tạp chí 39(2020) Trang: 3033-3055
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 6801-6817
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 59(2020) Trang: 2339-2346
Tạp chí: Alexandria Engineering Journal
Số tạp chí 39(2020) Trang: 525-542
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 3275-3295
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 116(2020) Trang: 9-15
Tạp chí: JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY


Vietnamese | English






 
 
Vui lòng chờ...