Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 2020(2020) Trang: 1-18
Tạp chí: Complexity

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. .us, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. .e idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.

Các bài báo khác
Số tạp chí 343(2020) Trang: 31-43
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí LNICST 343(2020) Trang: 203-215
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí 41(2020) Trang: 201-210
Tạp chí: Espacios
Số tạp chí 90(2020) Trang: 2814-2822
Tạp chí: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Số tạp chí 39(2020) Trang: 3033-3055
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 6801-6817
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 59(2020) Trang: 2339-2346
Tạp chí: Alexandria Engineering Journal
Số tạp chí 39(2020) Trang: 355-369
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 525-542
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 3275-3295
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 116(2020) Trang: 9-15
Tạp chí: JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY


Vietnamese | English






 
 
Vui lòng chờ...