Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 39(2020) Trang: 525-542
Tạp chí: Journal of Intelligent and Fuzzy Systems

During the last decade, ensemble clustering has been the subject of many researches in data mining. In ensemble clustering, several basic partitions are first generated and then a function is used for the clustering aggregation in order to create a final partition that is similar to all of the basic partitions as much as possible. Ensemble clustering has been proposed to enhance efficiency, strength, reliability, and stability of the clustering. A common slogan concerning the ensemble clustering techniques is that “the model combining several poorer models is better than a stronger model”. Here at this paper, an ensemble clustering method is proposed using the basic k-means clustering method as its base clustering algorithm. Also, this study could raise the diversity of consensus by adopting some measures. Although our clustering ensemble approach has the strengths of kmeans, such as its efficacy and low complexity, it lacks the drawbacks which the kmeans suffers from; such as its problem in detection of clusters that are not uniformly distributed or in the circular shape. In the empirical studies, we test the proposed ensemble clustering algorithm as well as the other up-to-date cluster ensembles on different data-sets. Based on the experimental results, our cluster ensemble method is stronger than the recent competitor cluster ensemble algorithms and is the most up-to-date clustering method available.

Các bài báo khác
Số tạp chí 343(2020) Trang: 31-43
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí LNICST 343(2020) Trang: 203-215
Tạp chí: Context-Aware Systems and Applications, and Nature of Computation and Communication
Số tạp chí 41(2020) Trang: 201-210
Tạp chí: Espacios
Số tạp chí 90(2020) Trang: 2814-2822
Tạp chí: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Số tạp chí 39(2020) Trang: 3033-3055
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 6801-6817
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 59(2020) Trang: 2339-2346
Tạp chí: Alexandria Engineering Journal
Số tạp chí 39(2020) Trang: 355-369
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 39(2020) Trang: 3275-3295
Tạp chí: Journal of Intelligent and Fuzzy Systems
Số tạp chí 116(2020) Trang: 9-15
Tạp chí: JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY


Vietnamese | English






 
 
Vui lòng chờ...