A lot of research has been directed to the new optimizers that can find a suboptimal solution for any optimization problem named as heuristic black-box optimizers. They can find the suboptimal solutions of an optimization problem much faster than the mathematical programming methods (if they find them at all). Particle swarm optimization (PSO) is an example of this type. In this paper, a new modified PSO has been proposed. The proposed PSO incorporates conditional learning behavior among birds into the PSO algorithm. Indeed, the particles, little by little, learn how they should behave in some similar conditions. The proposed method is named Conditionalized Particle Swarm Optimization (CoPSO). The problem space is first divided into a set of subspaces in CoPSO. In CoPSO, any particle inside a subspace will be inclined towards its best experienced location if the particles in its subspace have low diversity; otherwise, it will be inclined towards the global best location. The particles also learn to speed-up in the non-valuable subspaces and to speed-down in the valuable subspaces. The performance of CoPSO has been compared with the state-of-the-art methods on a set of standard benchmark functions.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên