Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2022
Số tạp chí 16(2022) Trang: 1-15
Tạp chí: Frontiers in Neurorobotics

Locomotion mode recognition provides the prosthesis control with the information on when to switch between different walking modes, whereas the gait phase detection indicates where we are in the gait cycle. But powered prostheses often implement a different control strategy for each locomotion mode to improve the functionality of the prosthesis. Existing studies employed several classical machine learning methods for locomotion mode recognition. However, these methods were less effective for data with complex decision boundaries and resulted in misclassifications of motion recognition. Deep learning-based methods potentially resolve these limitations as it is a special type of machine learning method with more sophistication. Therefore, this study evaluated three deep learning-based models for locomotion mode recognition, namely recurrent neural network (RNN), long short-term memory (LSTM) neural network, and convolutional neural network (CNN), and compared the recognition performance of deep learning models to the machine learning model with random forest classifier (RFC). The models are trained from data of one inertial measurement unit (IMU) placed on the lower shanks of four able-bodied subjects to perform four walking modes, including level ground walking (LW), standing (ST), and stair ascent/stair descent (SA/SD). The results indicated that CNN and LSTM models outperformed other models, and these models were promising for applying locomotion mode recognition in real-time for robotic prostheses.

Các bài báo khác
Số tạp chí 9(2022) Trang: 313-324
Tạp chí: Journal of Asian Finance, Economics and Business
Số tạp chí 1(2022) Trang: 88-95
Tạp chí: 2022 International Conference on Control, Robotics and Informatics (ICCRI)
Số tạp chí 1(2022) Trang: 1-19
Tạp chí: International Journal of Computational Intelligence and Applications
Số tạp chí 2(2022) Trang: 779696-779713
Tạp chí: Frontiers in Space Technologies
Số tạp chí 132(2022) Trang: 53-59
Tạp chí: Journal of Animal Science and Technology
Số tạp chí 34(2022) Trang: 1-5
Tạp chí: Livestock for Rural Development
Số tạp chí 2(2022) Trang: 168–185
Tạp chí: International Journal of TESOL & Education
Số tạp chí 3(2022) Trang:
Tạp chí: FOSTER: Journal of English Language Teaching
Số tạp chí 3(2022) Trang: 34-40
Tạp chí: IAR Journal of Humanities and Social Science


Vietnamese | English






 
 
Vui lòng chờ...