Nghiên cứu này đề xuất một mô hình phân tách giọng hát từ nguồn hỗn hợp âm nhạc bằng mạng nơron tích chập - CNN (Convolutional Neural Network). Phép biến đổi Fourier thời gian ngắn - STFT (Short time Fourier Transform) được áp dụng để trích các đặc trưng cơ bản của tín hiệu giọng hát. Bộ dữ liệu DSD100 (Demixing Secrets Dataset 100) gồm các hỗn hợp âm nhạc của giọng hát và nhạc đệm từ các nhạc cụ như trống, bass, .v.v. được sử dụng để đánh giá hiệu suất của mô hình mạng CNN. Kết quả thực nghiệm cho thấy mô hình mạng CNN đạt độ chính xác là 97.24%.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên