Trong nghiên cứu này, chúng tôi đề xuất một hệ thống nhận dạng một số lỗi phổ biến trên bề mặt gạch men trong thực tế. Ở đây việc kiểm tra đánh giá được thực hiện hoàn toàn tự động dựa trên hệ thống băng tải cơ khí, thiết bị điều khiển phần cứng và phần mềm xử lý, nhận dạng. Đầu tiên, gạch sẽ được tách khỏi nền và tính toán đặc trưng ảnh dựa trên histogram và kết cấu bề mặt để nhận dạng loại mẫu của gạch dùng mạng nơ-ron nhân tạo. Tiếp theo, tiến hành trừ ảnh mẫu gạch và gạch mẫu để nhận dạng lỗi sử dụng kỹ thuật xử lý hình thái. Kết quả thực nghiệm được tiến hành trên tập dữ liệu 150 ảnh viên gạch thuộc 15 loại mẫu khác nhau với tổng cộng 292 loại lỗi cần nhận dạng. Kết quả nhận dạng của hệ thống đạt 96.92% với 100% số gạch mẫu được nhận dạng đúng. Thời gian nhận dạng trung bình khoảng 1s cho một mẫu gạch đã khẳng định tính hiệu quả của hệ thống được đề nghị.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên