Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 27(2024) Trang: 3357-3367
Tạp chí: Science and Technology Development Journal

Introduction: This study, which was first conducted in Vietnam, aimed to develop a multivariable and simple-variable linear regression model from the direct measurement of the UV‒Vis absorption of copper(II) ions in aqueous solution without using other reagents (chelating agents and solvents), which reduces environmental pollution and analysis fees.

Methods: Simple-variable and multivariable linear regression models were developed from UV‒Vis spectral data of copper(II) ion solutions with concentrations ranging from 0.2 to 50 ppm.

Results: Four multivariable regression models were developed and modified, and the optimal simple variable regression model was selected. This study analyzed the suitability of single and multivariable models for the analysis of copper(II) ions in aqueous solution at low concentrations.

Conclusion: This study successfully built and adjusted linear regression models for predicting the copper(II) ion content in aqueous solution via a photometric method. The multivariable model with odd variables (model No. 2’) and the simple-variable model at a wavelength of 221 were optimized for use in the prediction of the concentration at an acceptable level of 0.5 ppm. These results were verified by the graph of the correlation between the true concentration and the predicted concentration in both selected models. In particular, the multivariate model yields significantly more accurate prediction results than does the simple-variable model.

Các bài báo khác
Số tạp chí Lastest articles(2024) Trang: 1-19
Tạp chí: International Journal of Lifelong Education
Số tạp chí 45(2024) Trang:
Tạp chí: Kasetsart Journal of Social Sciences
Số tạp chí 204(2024) Trang: 1-32
Tạp chí: Journal of Optimization Theory and Applications
Số tạp chí 8(2024) Trang: 601-610
Tạp chí: INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE
Số tạp chí 28(2024) Trang: 232–244
Tạp chí: Applied Computer Systems
Số tạp chí 1349(2024) Trang: 1 - 11
Tạp chí: IOP Conf. Series: Earth and Environmental Science


Vietnamese | English






 
 
Vui lòng chờ...