The smallest triple ring tube-like gold clusters M2@Au15q with M = Mo, W and q = 1, 0, 1 are reported for the first time. Incorporation of an M2 dimer results in a remarkable modification of both atomic and electronic structures of the gold host. While the bare Au15 cluster exhibits a 3D cage shape, the doubly doped clusters M2@Au15 in all charge states are found to prefer a tubular form composed of three five-membered Au rings in an anti-prism arrangement and stabilized by an M2 unit placed inside the tube-like Au15 gold framework. The equilibrium geometry of both M2@Au15 and M2@Au15- is not much modified upon electron detachment from or attachment to their pure gold counterpart. The anion M2@Au15- with 28 itinerant electrons establishes an electron shell configuration of 1S2 1P6 1D102S2 1F8 , in which the 1F shell splits into four different sub-levels. These stable clusters are thus not magic. Computed results on the first and second hyper-polarizability parameters of the doped clusters show a strong dependence on the charge. Overall, the neutral M2@Au15 is found to exhibit a particularly strong nonlinear optical (NLO) response. These clusters can also be extended to 1D nanowires, providing helpful guidance for the design of novel gold-based nanowires with rich optoelectronic properties
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên