Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2022
Số tạp chí 0(2022) Trang:
Tạp chí: Computational Statistics

Logistic regression is a standard model in many studies of binary outcome data, and the analysis of missing data in this model is a fascinating topic. Based on the idea of Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann Stat, 37:490–517, proposed are two different types of multiple imputation (MI) estimation methods, which each use three empirical conditional distribution functions to generate random values to impute missing data, to estimate the parameters of logistic regression with covariates missing at random (MAR) separately or simultaneously by using the estimating equations of Fay RE (1996) Alternative paradigms for the analysis of imputed survey data. J Am Stat Assoc, 91:490–498. The derivation of the two proposed MI estimation methods is under the assumption of MAR separately or simultaneously and exclusively for categorical/discrete data. The two proposed methods are computationally effective, as evidenced by simulation studies. They have a quite similar efficiency and outperform the complete-case, semiparametric inverse probability weighting, validation likelihood, and random forest MI by chained equations methods. Although the two proposed methods are comparable with the joint conditional likelihood (JCL) method, they have more straightforward calculations and shorter computing times compared to the JCL and MICE methods. Two real data examples are used to illustrate the applicability of the proposed methods.

Các bài báo khác
Số tạp chí 67(2022) Trang: 121-127
Tạp chí: Journal of the Faculty of Agriculture, Kyushu University
Số tạp chí 28 (2), 2022(2022) Trang: 169–177
Tạp chí: Food Science and Technology Research
Số tạp chí 32(2022) Trang:
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 32(2022) Trang: 314–327
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 32(2022) Trang: 296-303
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 9(2022) Trang: 699-708
Tạp chí: Journal of the Turkish Chemical Society Section A: Chemistry
Số tạp chí 12(2022) Trang: 942-949
Tạp chí: International Journal of Renewable Energy Research


Vietnamese | English






 
 
Vui lòng chờ...