Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2022
Số tạp chí 429(2022) Trang: 1-11
Tạp chí: Geoderma

Despite the well-known potential of earthworms to modify soil macroporosity and water infiltration through their burrowing activities, it is still difficult to predict which species are more effective in increasing water infiltration. We thus investigated the relationships between soil water infiltration, burrow network properties, morphology and anatomy of a diversity of earthworm species. We sampled 23 earthworm species in northern Vietnam and measured 16 morpho-anatomical traits a priori linked to their feeding, vertical distribution or burrowing behaviour. One individual was then incubated in a repacked soil core for four weeks under laboratory conditions, each in four replicates. After incubation, burrow network properties were assessed using X-ray computed tomography, and soil saturated hydraulic conductivity was measured using the falling head method. We found large differences among species belonging to similar or different ecological categories in their effect on soil saturated hydraulic conductivity. We observed neutral to positive effects with an increase of up to 30-fold compared to cores without earthworms. The effect of earthworms on soil hydraulic conductivity was well predicted by burrow network properties (volume and continuity of burrows) or morpho-anatomical traits (body weight, circular and longitudinal muscles thickness) using the random forest regression models (R2 > 0.95 in both cases). Earthworms with a large body weight and circular and longitudinal muscle thicknesses have the highest probability of increasing soil saturated hydraulic conductivity compared to other species. In addition, we showed from the coinertia analysis that body weight and circular and longitudinal muscle thickness were positively associated with the volume and continuity of burrows. Our findings therefore illustrate the power of employing a trait-based approach to predict the effect of non-Lumbricidae earthworms on water infiltration in comparison to the classical ecological category approach. Such trait information could be used to prioritize practices that favour the expression of more desirable earthworm traits to increase soil water infiltration.

Các bài báo khác
Số tạp chí 67(2022) Trang: 121-127
Tạp chí: Journal of the Faculty of Agriculture, Kyushu University
Số tạp chí 28 (2), 2022(2022) Trang: 169–177
Tạp chí: Food Science and Technology Research
Số tạp chí 32(2022) Trang:
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 32(2022) Trang: 314–327
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 32(2022) Trang: 296-303
Tạp chí: Progress in Natural Science: Materials International
Số tạp chí 9(2022) Trang: 699-708
Tạp chí: Journal of the Turkish Chemical Society Section A: Chemistry
Số tạp chí 12(2022) Trang: 942-949
Tạp chí: International Journal of Renewable Energy Research


Vietnamese | English






 
 
Vui lòng chờ...