In this article, we focus on the Tikhonov–Browder regularization scheme for both weak and strong vector equilibrium problems. Under suitable coercive conditions, the existence of solutions to weak vector equilibrium problems and their regularized problems are established in both monotone and nonmonotone cases, and furthermore we show that the conditions, which guarantee the boundedness of regularized solutions, become sufficient conditions for the solvability of the original problems. For the strong problems, we use generalized convexities and/or coercivity properties concerning a vector optimization problem to establish convergence results of the regularization method.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên