It has recently been demonstrated that leaf recognition systems opened to an exciting challenge for computer vision and machine learning. These systems’ actual benefit depends on the recognition capacity of models in unconstrained environments and application scenarios. In this paper, the authors collect a real-world dataset containing 1700 images with 34 types of medicinal plants for the evaluation of object recognition algorithms. The images have been taken in several botanic gardens in much different exposure, distance, and rotation. Then we evaluate several off-the-shelf deep architectures to recognize medicinal plants and take into account the recognition accuracy. An excellent average F1-score of 0.98 is achieved. Finally, we integrate the best approach into our self-developed mobile application that (i) recognizes the medicinal plants in real-time and (ii) proposes their healthcare’s uses and remedies.
Số tạp chí Prof. Andrew Harding, Prof. Pip Nicholson, A/Prof. Nguyen Thi Que Anh, A/Prof.Vu Cong Giao, Dr. Bui Tien Dat, Velizar Damyanov(2020) Trang: 5-12
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên