Motivated by increasing the tampering of genuine documents during a transmission over digital channels, we focus on developing a data hiding framework for determining whether a received document is genuine or falsified. The input document is transformed into a standard form to minimize geometric distortions. Fully convolutional networks (FCN) is utilized to detect document’s content regions. Next, we construct hiding patterns used for hiding a secret information. Modifying the pixel values of these patterns for carrying secret bits depends on the edge and corner features of document content, and the connectivity of their neighboring pixels. The hiding process is then conducted by changing the ratio between the number of edge features and the number of corner features of subregions within the content regions. The experiments are performed on various binary documents, and our approach gives competitive performance compared to state-of-the-art approaches.
Số tạp chí Prof. Andrew Harding, Prof. Pip Nicholson, A/Prof. Nguyen Thi Que Anh, A/Prof.Vu Cong Giao, Dr. Bui Tien Dat, Velizar Damyanov(2020) Trang: 5-12
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên