With the proliferation of smartphones and wear- able devices having Micro-Electro-Mechanical Systems (MEMS) sensors built in, data samples of linear acceleration and angular velocity can be collected almost anytime anywhere. These motion data can be used to identify various types of human motions and to detect the anomaly of individuals movements. This work presents attempts to use the unsupervised Affinity Propagation (AP) clustering algorithm and the supervised Support Vector Machine (SVM) classification algorithm to identify four types of human gait motions: walking, jogging, climbing upstairs and downstairs. Features of three-dimensional linear acceleration that can enable the algorithms to identify these motion types correctly were selected by analyzing the variation of the feature values among different motion types. Efficacy of Affinity Propagation (AP), Linear and Non-linear Support Vector Machine (SVM) algorithms were also studied by comparing their ratios of correct, false positive, false negative and F1 score classification. This preliminary study demonstrated Linear SVM achieved the best performance, followed by Affinity Propagation. Quite surpris- ingly, Non-linear SVM appeared to be inferior to the other two algorithms.
Tạp chí: Proceeding of International workshop 2019 on trade and Science-Technology development in the Mekong Delta in the context of international integration
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: New Issues in Educational Sciences: Inter-Disciplinary and Cross-Disciplinary Approaches, University of Education (VNU-UED) - Vietnam National University, Hanoi, Vietnam, June 20th, 2019
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên