Grain discoloration disease of rice is an emerging threat to rice harvest in Vietnam as well as all over the world and it acquires specific attention as it results in qualitative loss of harvested crop. An accurate classification is preliminary to any kind of intervention. Unfortunately, collecting enough grain discoloration data as well as building and training a machine learning model from scratch is next to impossible due to the lack of hardware infrastructure and finance support. It painfully restricts the needs of rapid solutions to deal with the disease. For this purpose, this paper exploits the idea of transfer learning which is the improvement of learning in a new prediction task through the transfer of knowledge from a related prediction task that has already been learned. By utilizing convolutional neural networks trained with our collected data, our experiment shows that the proposed idea performs perfectly and achieves the classification accuracy of 88.2% with the acceptable training time on a normal laptop.
Tạp chí: Proceeding of International workshop 2019 on trade and Science-Technology development in the Mekong Delta in the context of international integration
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: New Issues in Educational Sciences: Inter-Disciplinary and Cross-Disciplinary Approaches, University of Education (VNU-UED) - Vietnam National University, Hanoi, Vietnam, June 20th, 2019
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên