Rice is one of the profit export products of Vietnam but how to detect quality of the rice is still difficult. This work proposes an approach for rice quality classification. In this approach, image processing algorithms and machine learning methods were used to recognize and classify two difference categories of rice (whole rice and broken rice) based on the rice’s size of the national standard of rice quality evaluation, using Convolutional Neural Network (CNN). Experimental results for 2000 real images give 93.85% accuracy. The system also used Support Vector Machines method with HOG features and k-Nearest Neighbors methods in order to classify and compare the accuracy of those algorithms which show the results of 85.06% and 84.30% accuracy, respectively. These results show that rice quality evaluation and classification could be automatically done using Deep Learning approach.
Tạp chí: Proceeding of International workshop 2019 on trade and Science-Technology development in the Mekong Delta in the context of international integration
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: New Issues in Educational Sciences: Inter-Disciplinary and Cross-Disciplinary Approaches, University of Education (VNU-UED) - Vietnam National University, Hanoi, Vietnam, June 20th, 2019
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên