Information from metagenomic data from human microbiome may improve diagnosis and prognosis for multiple human diseases. However, to achieve a prediction based on bacterial abundance information remains a challenge. Indeed, the number of features being much higher than the number of samples, we face difficulties related to high dimensional data processing, as well as overfitting. In this study, we investigate several convolutional neural network architectures for synthetic images and some experimental techniques to generate and train these synthetic images. We also explore supervised learning for visualizing high dimensional data that use data on genus, species and higher taxonomic level information. In addition, some dimensionality reduction approaches are examined on very high dimensional data such as gene families abundance. We evaluated our approach on six different metagenomic datasets including five types of diseases with more than 1000 samples. Our method displays promising results and can be used in different omics data settings, including integrative ones.
Tạp chí: Proceeding of International workshop 2019 on trade and Science-Technology development in the Mekong Delta in the context of international integration
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: HỘI NGHỊ – TRIỂN LÃM QUỐC TẾ LẦN THỨ 5 VỀ ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA THE 5TH VIETNAM INTERNATIONAL CONFERENCE AND EXHIBITION ON CONTROL AND AUTOMATION
Tạp chí: New Issues in Educational Sciences: Inter-Disciplinary and Cross-Disciplinary Approaches, University of Education (VNU-UED) - Vietnam National University, Hanoi, Vietnam, June 20th, 2019
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên