Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí trong nước 2020
Số tạp chí 134(2020) Trang:
Tạp chí: Optics and Lasers in Engineering

Due to lower core loss and higher flux density and permeability, thin non-oriented silicon steels are becoming more and more important for soft magnetic materials. Recently, laser has been emerged as a cost-effective tool for machining thin silicon steels, especially for the low-volume and high-variety motor manufacturing. Based on experimental data, this study aims at developing an extreme learning machine (ELM) for predicting the laser cutting qualities of silicon steels with a thickness of 100 𝜇m. The three parameters considered were the laser power, cutting speed and pulse repetition rate and the two qualities monitored were the kerf waviness and heat affected zone (HAZ). Each parameter was designated at four levels and totally 64 sets of experimental parameter were performed. Experimental results showed that both cutting qualities were positively correlated with these three parameters. We randomly took 80% of the experimental data for model training while the remaining 20% was for model testing. To verify the ELM’s appropriateness and advantage, two auxiliary models, artificial neural network and full quadratic multiple regression analysis (MRA), were also developed based on the same dataset for comparison. Results revealed that ELM well predicted waviness and HAZ and provided the most accurate predictions among the three models. The errors for waviness and HAZ were 2.90% and 4.16%, respectively. Consequently, the developed ELM was practical and effective for the waviness and HAZ estimations. Moreover, based on the random forests method, the relative significance of inputs associated with the responses was also addressed.

Các bài báo khác
Số tạp chí 18(2020) Trang: 1192-1200
Tạp chí: Tạp chí Khoa học Nông nghiệp Việt Nam
Số tạp chí 14(2020) Trang: 84-93
Tạp chí: Nông nghiệp và Phát triển nông thôn
Số tạp chí 65(2020) Trang: 123-131
Tạp chí: Đại học Sư phạm Hà Nội
Số tạp chí 11b(305)-2020(2020) Trang: 232-236
Tác giả: Lê Văn Phương
Tạp chí: Ngôn ngữ & đời sống
Số tạp chí 9(2020) Trang: 77-85
Tạp chí: Dong Thap University Journal of Science
Số tạp chí 17(2020) Trang: 717-732
Tạp chí: Ho Chi Minh University of Education Journal of Science
Số tạp chí 10(2020) Trang:
Tạp chí: Journal of Science Ho Chi Minh City Open University
Số tạp chí 25(2020) Trang: 1-11
Tạp chí: Tạp chí khoa học quốc tế Đại học An Giang


Vietnamese | English






 
 
Vui lòng chờ...