A series of novel photo-switchable [2]rotaxanes (i.e., Rot-A-SP and Rot-B-SP before and after shuttling controlled by acid−base, respectively) containing one spiropyran (SP) unit (as a photochromic stopper) on the axle and two tetraphenylethylene (TPE) units on the macrocycle were synthesized via click reaction. Upon UV/visible light exposure, both mono-fluorophoric rotaxanes Rot-A-SP and Rot-B-SP with the closed form (i.e., non-emissive SP unit) could be transformed into the open form (i.e., red-emissive merocyanine (MC) unit) to acquire their respective bi-fluorophoric Rot-A-MC and Rot-B-MC reversibly. The aggregation-induced emission (AIE) properties of bi-fluorophoric TPE combined with MC AIEgens of these designed rotaxanes and mixtures in semi-aqueous solutions induced interesting ratiometric photoluminescence (PL) and Förster resonance energy transfer (FRET) behaviors, which were further investigated and verified by dynamic light scattering (DLS), X-ray diffraction (XRD), and time-resolved photoluminescence (TRPL) measurements along with theoretical studies. Accordingly, in contrast to the model axle (Axle-MC) and the analogous mixture (Mixture-MC, containing the axle and macrocycle components in a 1:1 molar ratio), more efficient FRET behaviors and stronger red PL emissions were obtained from dual-AIEgens between a blue-emissive TPE donor (PL emission at 468 nm) and a red-emissive MC acceptor (PL emission at 668 nm) in both novel photo-switchable [2]rotaxanes Rot-AMC and Rot-B-MC under various external modulations, including water content, UV/Vis irradiation, pH value, and temperature. Furthermore, the reversible fluorescent photo-patterning applications of Rot-A-SP in a powder form and a solid film with excellent photochromic and fluorescent behaviors are first investigated in this report.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên