In machine learning, one often encounters data sets where a general pattern is violated by a relatively small number of exceptions (for example, a rule that says that all birds can fly is violated by examples such as penguins). This complicates the concept learning process and may lead to the rejection of some simple and expressive rules that cover many cases. In this paper we present an approach to this problem in description logic learning by computing partial descriptions (which are not necessarily entirely complete) of both positive and negative examples and combining them. Our Symmetric Parallel Class Expression Learning approach enables the generation of general rules with exception patterns included. We demonstrate that this algorithm provides significantly better results (in terms of metrics such as accuracy, search space covered, and learning time) than standard approaches on some typical data sets. Further, the approach has the added benefit that it can be parallelised relatively simply, leading to much faster exploration of the search tree on modern computers.
Trích dẫn: Trần Công Án, Tống Thị Ngọc Mai và Lê Thị Thu Lan, 2017. Xây dựng ontology tự động từ bảng chú giải. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 133-139.
Trích dẫn: Trần Công Án, Lâm Chí Nguyện, Đoàn Hòa Minh, Phan Tấn Tài, Phạm Hữu Tài, Châu Xuân Phương và Sơn Búp Pha, 2016. Hệ thống hỗ trợ cố vấn học tập trên thiết bị di động. Tạp chí Khoa học Trường Đại học Cần Thơ. 47a: 47-58.
Trích dẫn: Trần Công Án, Lữ Minh Phúc, Đỗ Thanh Đức, Ngô Bá Hùng, Lê Đình Chiến, Phạm Thị Xuân Diễm, Sơn Búp Pha và Nguyễn Hữu Vân Long, 2017. Phát hiện té ngã cho người cao tuổi bằng gia tốc kế và mô hình học sâu Long Short-Term Memory. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 65-71.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên