Ngày nhận bài:15/09/2017 Ngày nhận bài sửa: 10/10/2017
Ngày duyệt đăng: 20/10/2017
Title:
Elderly fall detection based on accelerometer and long short-term memory
Từ khóa:
Gia tốc kế, mạng neural hồi qui, người cao tuổi, phát hiện té ngã
Keywords:
Accelerometer, elderly, fall detection, ong Short-Term Memory
ABSTRACT
Fall is the most common cause of injury for elderly people. It does not only lead to physical injuries such as broken hip or head trauma, but also causes some psychological problems. However, early fall detection can help to reduce fall’s consequences. Therefore, in this paper, an approach is proposed to detect elderly fall based on accelerometer data. The fall detection model is constructed using the long short-term memory deep learning architecture. A long short-term memory with 64 hidden units is used to train the detection model. The experimental result shows that this approach is suited to detect falls of the elderly with 93.9% of accuracy.
TÓM TẮT
Té ngã là một hiện tượng phổ biến của người cao tuổi. Té ngã không những gây ra các chấn thương sinh lý nghiêm trọng như gãy xương, tổn thương vùng đầu,… mà còn gây ra các tổn thương về tâm lý cho người cao tuổi. Ngoài việc phòng chống thì phát hiện té ngã một cách kịp thời có thể giúp hạn chế hậu quả của việc té ngã gây ra. Trong bài báo này, chúng tôi đề xuất một phương pháp phát hiện té ngã cho người già sử dụng gia tốc kế (accelerometer) trên các thiết bị di động. Mô hình nhận dạng té ngã được xây dựng dựa trên mô hình học sâu Long Short-Term Memory (LSTM). Chúng tôi sử dụng mô hình học sâu LSTM với 64 lớp ẩn. Kết quả thực nghiệm trên tập dữ liệu thực do chúng tôi thu thập thực tế cho thấy rằng mô hình đề xuất phù hợp cho việc phát hiện té ngã ở người cao tuổi với độ chính xác là 93,9%.
Trích dẫn: Trần Công Án, Lữ Minh Phúc, Đỗ Thanh Đức, Ngô Bá Hùng, Lê Đình Chiến, Phạm Thị Xuân Diễm, Sơn Búp Pha và Nguyễn Hữu Vân Long, 2017. Phát hiện té ngã cho người cao tuổi bằng gia tốc kế và mô hình học sâu Long Short-Term Memory. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 65-71.
Trích dẫn: Trần Công Án, Tống Thị Ngọc Mai và Lê Thị Thu Lan, 2017. Xây dựng ontology tự động từ bảng chú giải. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 133-139.
Trích dẫn: Trần Công Án, Lâm Chí Nguyện, Đoàn Hòa Minh, Phan Tấn Tài, Phạm Hữu Tài, Châu Xuân Phương và Sơn Búp Pha, 2016. Hệ thống hỗ trợ cố vấn học tập trên thiết bị di động. Tạp chí Khoa học Trường Đại học Cần Thơ. 47a: 47-58.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên