Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Book chapter 2020
Số tạp chí 712(2020) Trang: 19-28
Tạp chí: IT Convergence and Security, Lecture Notes in Electrical Engineering

Metagenomic is now a novel source for supporting diagnosis and prognosis human diseases. Numerous studies have pointed to crucial roles of metagenomics in personalized medicine approaches. Recent years, machine learning has been widely deploying in a vast amount of metagenomic research. Usually, gene family data are characterized by very high dimension which can be up to millions of features. However, the number of obtained samples is rather small compared to the number of attributes. Therefore, the results in validation sets often exhibit poor performance while we can get high accuracy during training phrases. Moreover, a very large number of features on each gene family dataset consumes a considerable time in processing and learning. In this study, we propose feature selection methods using Ridge Regression on datasets including gene families, then the new obtained set of features is binned by an equal width binning approach and fetched into either a Linear Regression and a One-Dimensional Convolutional Neural Network (CNN1D) to do prediction tasks. The experiments are examined on more than 1000 samples of gene family abundance datasets related to Liver Cirrhosis, Colorectal Cancer, Inflammatory Bowel Disease, Obesity and Type 2 Diabetes. The results from the proposed method combining between feature selection algorithms and binning show significant improvements in both prediction performance and execution time compared to the state-of-the-art methods.

Các bài báo khác
Số tạp chí Đỗ Thị Thanh Hương(2020) Trang: 121-148
Tạp chí: Sinh Lý Cá Nguyên lý và ứng dụng
Số tạp chí In: Anthony P. Farrell and Colin J. Brauner Honorary William S. Hoar and David J. Randall(2020) Trang: 315-353
Tạp chí: Fish Physiology
Số tạp chí In Abiodun Elijah Obayelu and Oluwakemi Adeola Obayelu(2020) Trang: 73-81
Tạp chí: Developing Sustainable Food Systems, Policies, and Securities
Số tạp chí L.K. Heng(2020) Trang: 166-178
Tạp chí: LANDSCAPE SALINITY AND WATER MANAGEMENT FOR IMPROVING AGRICULTURAL PRODUCTIVITY
Số tạp chí Yo-Ping HuangWen-June WangHoang An QuocLe Hieu GiangNguyen-Le HungThe 5th International Conference on Green Technology and Sustainable Development, Ho Chi Minh City, 27-28 November 2020(2020) Trang: 130-143
Tạp chí: Advances in Intelligent Systems and Computing
Số tạp chí In Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications(2020) Trang: 281-293
Tạp chí: Communications in Computer and Information Science
Số tạp chí In Advances in Computational Collective Intelligence, 12th International Conference, ICCCI 2020(2020) Trang: 566-578
Tạp chí: Communications in Computer and Information Science
Số tạp chí In: Semone Marseau(2020) Trang: 105-123
Tạp chí: The Mekong: History, Geology and Environmental Issues
Số tạp chí In Carol Griffiths and Zia Tajeddin(2020) Trang: 28-40
Tạp chí: Lessons from Good Language Teachers
Số tạp chí Tran Khanh DangJosef KüngMakoto TakizawaTai M. Chung(2020) Trang: 443-451
Tạp chí: Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications
Số tạp chí Marcin Hernes, Krystian Wojtkiewicz, Edward Szczerbicki(2020) Trang: 74-86
Tạp chí: Communications in Computer and Information Science book series
Số tạp chí Tai M. Chung(2020) Trang: 200-214
Tạp chí: Communications in Computer and Information Science
Số tạp chí Marcin Hernes, Krystian Wojtkiewicz, Edward Szczerbicki(2020) Trang: 224-235
Tạp chí: Advances in Computational Collective Intelligence (CCIS)
Số tạp chí Tran Khanh Dang, Josef Küng, Makoto Takizawa, Tai M. Chung(2020) Trang: 452-460
Tạp chí: Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications
Số tạp chí Tran Khanh Dang, Josef Küng, Makoto Takizawa, Tai M. Chung(2020) Trang: 265-280
Tạp chí: Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications
Số tạp chí Tran Khanh DangJosef KüngMakoto TakizawaTai M. Chung(2020) Trang: 399-410
Tạp chí: Future Data and Security Engineering
Số tạp chí Tran Khanh Dang, Josef Küng, Makoto Takizawa, Tai M. Chung(2020) Trang: 294-308
Tạp chí: Communications in Computer and Information Science book series
Số tạp chí Tran Khanh Dang, Josef Küng, Makoto Takizawa, Tai M. Chung(2020) Trang: 340-357
Tạp chí: Communications in Computer and Information Science
Số tạp chí In Mark R. Freiermuth & Nourollah Zarrinabadi(2020) Trang: 175-202
Tạp chí: Technology and the Psychology of Second Language Learners and Users
Số tạp chí ASHOK PANDEY(2020) Trang: 475-492
Tạp chí: CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING
Số tạp chí In: Reddy J., Wang C., Luong V., Le A.(2020) Trang: 1017-1026
Tạp chí: ICSCEA 2019. Lecture Notes in Civil Engineering
Số tạp chí 1(2020) Trang: 116-123
Tác giả: Đỗ Tấn Khang
Tạp chí: Current Research in Agricultural and Food Science
Số tạp chí 1(2020) Trang: 99-122
Tạp chí: Digital Media Steganography Principles, Algorithms, and Advances


Vietnamese | English






 
 
Vui lòng chờ...