Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 5(2020) Trang: 547-556
Tạp chí: Advances in Science, Technology and Engineering Systems Journal

The human gut environment can contain hundreds to thousands bacterial species which are proven that they are associated with various diseases. Although Machine learning has been supporting and developing metagenomic researches to obtain great achievements in personalized medicine approaches to improve human health, we still face overfitting issues in Bioinformatics tasks related to metagenomic data classification where the performance in the training phase is rather high while we get low performance in testing. In this study, we present discretization methods on metagenomic data which include Microbial Compositions to obtain better results in disease prediction tasks. Data types used in the experiments consist of species abundance and read counts on various taxonomic ranks such as Genus, Family, Order, etc. The proposed data discretization approaches for metagenomic data in this work are unsupervised binning approaches including binning with equal width bins, considering the frequency of values and data distribution. The prediction results with the proposed methods on eight datasets with more than 2000 samples related to different diseases such as liver cirrhosis, colorectal cancer, Inflammatory bowel disease, obesity, type 2 diabetes and HIV reveal potential improvements on classification performances of classic machine learning as well as deep learning algorithms. These binning approaches are expected to be promising pre-processing techniques on various data domains to improve the performance of prediction tasks in metagenomics.

Các bài báo khác
Số tạp chí Vol. VIII, Issue 6(2020) Trang: 107-114
Tạp chí: International Journal of Economics, Commerce and Management
Số tạp chí 52(2020) Trang: 197-201
Tạp chí: The Eurasian Journal of Medicine
Số tạp chí 8(2020) Trang: 1-5
Tạp chí: Journal of Research in Clinical Medicine
Số tạp chí 56(3)(2020) Trang: 392-394
Tạp chí: Chemistry of Natural Compounds
Số tạp chí 11(2020) Trang: 630 - 638
Tạp chí: International Journal of Advanced Computer Science and Applications
Số tạp chí 146 (5)(2020) Trang: 04020024
Tạp chí: Journal of Waterway, Port, Coastal and Ocean Engineering
Số tạp chí 5(2020) Trang: 700-709
Tạp chí: Advances in Science, Technology and Engineering Systems Journal
Số tạp chí 11(2020) Trang: 711-721
Tạp chí: International Journal of Advanced Computer Science and Applications


Vietnamese | English






 
 
Vui lòng chờ...