Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 146 (5)(2020) Trang: 04020024
Tạp chí: Journal of Waterway, Port, Coastal and Ocean Engineering

Bathymetric data plays a major role in obtaining accurate results in hydrodynamic modeling of rivers, estuaries, and coasts. Bathymetries are commonly generated by spatial interpolation methods of data on a model grid. Sparse and limited data will impact the quality of the interpolated bathymetry. This study proposes an efficient spatial interpolation framework for producing a channel bathymetry from sparse, cross-sectional data. The proposed approach consists of three steps: (1) anisotropic bed topography data locations transformed to an orthogonal and smooth grid coordinate system that is aligned with its riverbanks and thalweg; (2) sample data are linearly interpolated to generate river bathymetry; and (3) the generated river bathymetry is converted into its original coordinates. The proposed approach was validated with a high spatial resolution topography of the Tieu estuarine branch. In addition, the proposed approach is compared with other spatial interpolation methods such as ordinary kriging, inverse distance weighting, and kriging with external drift. The proposed approach gives a nearly unbiased topography and a strongly reduced RMSE compared with the other methods. In addition, it accurately reproduces the thalweg. The proposed approach appears to be efficiently applicable for regions with sparse cross-sections. Moreover, river topography generated by the proposed approach is smooth including important morphologic features, making it suitable for two- and three-dimensional hydrodynamic modeling.

Các bài báo khác
Số tạp chí Vol. VIII, Issue 6(2020) Trang: 107-114
Tạp chí: International Journal of Economics, Commerce and Management
Số tạp chí 52(2020) Trang: 197-201
Tạp chí: The Eurasian Journal of Medicine
Số tạp chí 8(2020) Trang: 1-5
Tạp chí: Journal of Research in Clinical Medicine
Số tạp chí 56(3)(2020) Trang: 392-394
Tạp chí: Chemistry of Natural Compounds
Số tạp chí 11(2020) Trang: 630 - 638
Tạp chí: International Journal of Advanced Computer Science and Applications
Số tạp chí 5(2020) Trang: 700-709
Tạp chí: Advances in Science, Technology and Engineering Systems Journal
Số tạp chí 11(2020) Trang: 711-721
Tạp chí: International Journal of Advanced Computer Science and Applications


Vietnamese | English






 
 
Vui lòng chờ...