Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 11(2020) Trang: 711-721
Tạp chí: International Journal of Advanced Computer Science and Applications

Student performance prediction is one of the most concerning issues in the field of education and training, especially educational data mining. The prediction supports students to select courses and design appropriate study plans for themselves. Moreover, student performance prediction enables lecturers as well as educational managers to indicate what students should be monitored and supported to complete their programs with the best results. These supports can reduce formal warnings and expulsions from universities due to students’ poor performance. This study proposes a method to predict student performance using various deep learning techniques. Also, we analyze and present several techniques for data pre-processing (e.g., Quantile Transforms and MinMax Scaler) before fetching them into well-known deep learning models such as Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN) to do prediction tasks. Experiments are built on 16 datasets related to numerous different majors with appropriately four million samples collected from the student information system of a Vietnamese multidisciplinary university. Results show that the proposed method provides good prediction results, especially when using data transformation. The results are feasible for applying to practical cases.

Các bài báo khác
Số tạp chí Vol. VIII, Issue 6(2020) Trang: 107-114
Tạp chí: International Journal of Economics, Commerce and Management
Số tạp chí 52(2020) Trang: 197-201
Tạp chí: The Eurasian Journal of Medicine
Số tạp chí 8(2020) Trang: 1-5
Tạp chí: Journal of Research in Clinical Medicine
Số tạp chí 56(3)(2020) Trang: 392-394
Tạp chí: Chemistry of Natural Compounds
Số tạp chí 11(2020) Trang: 630 - 638
Tạp chí: International Journal of Advanced Computer Science and Applications
Số tạp chí 146 (5)(2020) Trang: 04020024
Tạp chí: Journal of Waterway, Port, Coastal and Ocean Engineering
Số tạp chí 5(2020) Trang: 700-709
Tạp chí: Advances in Science, Technology and Engineering Systems Journal


Vietnamese | English






 
 
Vui lòng chờ...