Student performance is a critical task in universities. By predicting student performance in the early stage, we can identify students who need more attention to improve their learning performance. Also, these forecast tasks support students to select appropriate courses and design good study plans for themselves to obtain higher performance. Previous studies usually use only one model for all kinds of students regardless of each student’s ability and characteristics. For multidisciplinary universities, this type of model can produce poor performance. In this study, we propose to consider 4-grade levels of degree classification in Vietnam, and the prediction is based on the average performance in previous semesters to perform the prediction tasks. Four student groups are trained separately with their mark records—the used model depends on students’ average marks in previous semesters. The proposed method is validated on more than 4.5 million mark records of nearly 100,000 students at a multidisciplinary university in Vietnam. The experimental results show that the four Random Forest-based models give a positive average mean absolute error of 0.452 of Random Forest regression comparing with the error of 0.557 while using one model.
Trích dẫn: Trần Thanh Điện và Nguyễn Thái Nghe, 2017. Các mô hình e-learning hỗ trợ dạy và học. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 103-111.
Trích dẫn: Trần Thanh Điện, Thái Nhựt Thanh và Nguyễn Thái Nghe, 2019. Giải pháp phân loại bài báo khoa học bằng kĩ thuật máy học. Tạp chí Khoa học Trường Đại học Cần Thơ. 55(4A): 29-37.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên