Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 5(2024) Trang:
Tạp chí: SN Computer Science

Monitoring cardiovascular conditions is crucial in healthcare due to their significant impact on overall wellness and their role in mitigating heart-related diseases. To address this pressing issue, the research community has introduced various methodologies, among which deep learning approaches have shown notable effectiveness. Despite this potential, creating effective deep learning models tailored to time-series health data remains challenging. These challenges include processing vast amounts of data from IoT devices, building and selecting optimal deep learning models with appropriate parameters, and designing and implementing reliable systems for cardiovascular health monitoring. In response, our research introduces an advanced cardiovascular health monitoring system that takes advantage of wearable IoT and deep learning technologies to enhance healthcare. It features a multi-layered architecture, where each layer serves a specific function and integrates closely with the others. This integration enhances the system’s overall functionality and reliability. The system efficiently integrates processes from health data collection through deep learning analysis to the delivery of timely health alerts. A critical feature of this system is the targeted deep learning model, selected from six potential algorithms based on experiments with data from IoT-enabled smartwatches. The selection process involves an in-depth evaluation of the models’ performance, leading to the choice of the most effective model for system implementation. Our results highlight the system’s effectiveness in monitoring cardiovascular health, underscoring its potential to enhance personalized healthcare, particularly for individuals with cardiovascular conditions, through advanced monitoring technologies.

Các bài báo khác
Số tạp chí 25(2024) Trang: 93-102
Tạp chí: Journal of Ecological Engineering
Số tạp chí 73(2024) Trang: 3593-3607
Tạp chí: Optimization
Số tạp chí 15 November(2024) Trang: 1-23
Tạp chí: Journal of Global Optimization
Số tạp chí 20 April(2024) Trang: 1-14
Tạp chí: International Journal of Data Science and Analytics
Số tạp chí 53(2024) Trang: 419–439
Tác giả: Phan Văn Phúc
Tạp chí: Forum for Social Economics


Vietnamese | English






 
 
Vui lòng chờ...