Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 16(2024) Trang: 5991
Tạp chí: Silicon

We investigate the infuence of spin and impurity on the density of states of SiC nanotubes employing Density Functional
Theory (DFT) and a Machine Learning (ML) based framework. Our study investigates the electronic structures and magnetic properties of various SiC nanotube confgurations, including wurtzite, Co-doped, and undoped single-wall (6,0) chiral nanotubes, employing both DFT and pseudopotential approaches. The calculated energy band gap values for SiC bulk structures, nanotubes, and doped systems, retaining local density and local spin density approximations with the Hubbard U method, exhibit distinct characteristics. While undoped SiC systems remain nonmagnetic whereas Co-doped SiC systems show magnetic properties, with a total magnetic moment of around ~ 1.9 µB. Our frst-principles calculations indicate that Co-doped SiC nanotubes induce magnetism, however the total energy calculations revealed satisfactory stability for the ferromagnetic phase. Validation against DFT data demonstrates that our model achieves approximately 91.5% accuracy for predicting the density of states for quantum-confned SiC nanotube structures and also showcasing signifcant potential for further electronic properties calculations in this domain. Integrating ML algorithms with DFT-based approach presents an efcient algorithm for predicting total density of states in quantum-confned nanoscale structures. The fne tree regression algorithm shows highly efcient and efective prediction for density of states calculations


Các bài báo khác
Số tạp chí 12(2024) Trang: 98-105
Tạp chí: Journal of Applied Biology & Biotechnology
Số tạp chí 25(2024) Trang: 110-117
Tạp chí: Ecological Engineering & Environmental Technology
Số tạp chí 13(2024) Trang: 389 – 400
Tạp chí: International Journal of Advances in Applied Sciences
Số tạp chí 579(2024) Trang: 115-125
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
Số tạp chí 579(2024) Trang: 102-114
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
Số tạp chí 579(2024) Trang: 43-53
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
Số tạp chí 579(2024) Trang: 3-18
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST)
Số tạp chí 2191(2024) Trang: 237-247
Tạp chí: Communications in Computer and Information Science (CCIS)
Số tạp chí 2190(2024) Trang: 295-310
Tạp chí: Communications in Computer and Information Science
Số tạp chí 2191(2024) Trang: 138 - 150
Tạp chí: Communications in Computer and Information Science


Vietnamese | English






 
 
Vui lòng chờ...