Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 8(2024) Trang: 1-28
Tạp chí: Journal of Information and Telecommunication (JIT)

Breast cancer is cancer that forms in the cells of the breasts and is a severe health issue that affects many people around the world, especially since it is the most deadly cancer in women. By finding it early and using new treatments, patients can overcome this challenge and get back to a healthier life. This study proposed a procedure to fine-tune the Convolutional Neural Networks (CNN) model with data preprocessing and augmentation in classifying mammogram images called the Hybrid Mammogram Classification and Detection Pipeline (HMCaD). After using CNN for classification because it brings higher confidence in classifying tasks, the YOLOv8 has been applied for localization subtask to detect abnormal positions with predicted bounding boxes. The database is provided by the Mammographic Image Analysis Society (MIAS) and is protected by the United Kingdom. It comprises 330 samples, including 79 benign, 54 malignant, and 207 normal images. As a result, the classification in our model based on the custom EfficientNetB3 model and seam carving technique received a great validation accuracy, test accuracy, and F1 score throughout three scenarios at 96.73%, 97.59%, and 97.58%, respectively. Furthermore, the area under the Receiver Operating Characteristic (ROC) curve also has a surprise result of 0.96 (i.e. AUC = 0.96). Moreover, YOLOv8 for detecting abnormal positions in our study achieved 83.22% in Intersection over Union (IoU). This led to the research reaching good results in classifying and detecting breast cancer by considering several performance metrics

Các bài báo khác
Số tạp chí 72(2024) Trang: 58-68
Tạp chí: International Journal of Engineering Trends and Technology
Số tạp chí 12(2024) Trang: 77-80
Tạp chí: International Journal of Research in Engineering and Science
Số tạp chí 15(2024) Trang: 122-129
Tạp chí: International Journal of Environmental Science and Development


Vietnamese | English






 
 
Vui lòng chờ...