Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 14(2023) Trang: 1039-1049
Tạp chí: Inter. J. of Advanced Computer Science and Applications (IJACSA)

The Mekong Delta (MD) has suffered significant losses in land resources, economic damage, and human and property casualties due to recent landslides. An early warning system for landslides is a valuable tool for identifying the effectiveness and timely detection of changes in the soil to promptly determine solutions and minimize damage caused by landslides in an area. In this study, we apply a machine learning approach based on the Long Short-Term Memory (LSTM) algorithm to experiment with early warning of landslide events on soft soil in the MD. Horizontal pressure, the change in inclination angles of the sensor pile due to the soil mass sliding in both the x and y directions, and the warning levels are determined based on the deformation and displacement of the soil along the riverbank, considered candidate factors for inputs in the model. Data from the established sensor system is used to train the model, creating a training and testing dataset of 374,415 samples. The accuracy of the detection and classification threshold of the system is proposed to be measured using the average F1 score derived from precision and recall values. The optimal prediction results are gleaned from an observational window of 4 minutes and 30 seconds to project roughly 2 hours into the future. The validation process resulted in recall, precision, and F1-score stands at 0.8232 with a remarkably low standard deviation of about 1%. The successful application of this research can help identify abnormal events leading to riverbank landslides due to loading, thereby creating conditions for developing a reliable information system to provide managers with the ability to suggest timely solutions to protect the lives, property of residents and infrastructures.

Các bài báo khác
Số tạp chí 35(2023) Trang: 1-7
Tạp chí: Emirates Journal of Food and Agriculture
Số tạp chí 20(2023) Trang: 415-425
Tác giả: Dương Văn Học
Tạp chí: Manchester Journal of International Economic Law
Số tạp chí 35(2023) Trang: 815–824
Tạp chí: Journal of the Chinese Institute of Civil and Hydraulic Engineering
Số tạp chí 35(2023) Trang: 825–834
Tạp chí: Journal of the Chinese Institute of Civil and Hydraulic Engineering
Số tạp chí December 10-12, 2023 / Baku, Azerbaijan(2023) Trang: 1662-1676
Tạp chí: International Conference on Global Practice of Multidisciplinary Scientific Studies-V
Số tạp chí 15-17 December 2023/ Gaziantep, Turkey(2023) Trang: 290-300
Tạp chí: 11. International “Communication in The New World” Congress
Số tạp chí 13831(2023) Trang: 93-104
Tạp chí: (LNCS) Computational Data and Social Networks


Vietnamese | English






 
 
Vui lòng chờ...