This paper proposes a new classification model using the Bayes method. This model not only determines the prior probability based on the k-means algorithm, builds the method for estimating the probability density function via the kernel function, but also classifies the objects to the known populations. The proposed model is described via the experiment of image classifying. In this example, we first use the Gray level co-occurrence matrix to extract the features of images, and next classify this data set based on the improved Bayesian method. In another application, we also build the classification problem for the Algerian Forest Fires data set. The outstanding advantages of this method are the adaptive ability of the kernel function, the classification for multi-class, and the reduction of computational costs. In addition, the experimental results also show the potential of the developed model.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên