In this paper, an application of the Bayesian classifier for short-term stock trend prediction is presented. In order to use Bayesian classifier effectively, we transform the daily stock price time series object into a data frame format where the dependent variable is the stock trend label and the independent variables are the stock varia- tions of the last few days. Based on the posterior probability density function, we propose a new method for stock selection and then propose a new stock trading strategy. The numerical examples demonstrate the potential of the proposed strategy for application to short-term stock trading.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên