Machine learning algorithms are suggested for detecting and classifying hemorrhage regions on head CT/MRI images with high accuracy. However, most of these algorithms are not interested in the valuable characteristic of CT/MRI images, especially Hounsfield Unit values. Besides, they also only detect and classify one of types of the intracranial hemorrhage on each image. In this paper, we propose a new approach for brain hemorrhage identification using object detection algorithms like Faster R-CNN and R-FCN. The proposed approach can detect many regions of the brain hemorrhage on a CT image. The results show that the R-FCN algorithm gives better results than the Faster R-CNN algorithm on time and accuracy of identification.
Số tạp chí In Proceedings of the 6th International Conference on Computer Science, Applied Mathematics and Applications, ICCSAMA 2019(2019) Trang: 391-402
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên