Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2019
Số tạp chí 7(2019) Trang: 78675-78684
Tạp chí: IEEE Access

Nowadays, the consecutive increase of the volume of text corpora datasets and the countlessresearch directions in general classification have created a great opportunity and an unprecedented demandfor a comprehensive evaluation of the current achievement in the research of natural language processing.There are unfortunately few studies that have applied the combination of convolutional neural networks(CNN) and Apache Spark to the task of automating opinion discretization. In this paper, the authorspropose a new distributed structure for solving an opinion classification problem in text mining by utilizingCNN models and big data technologies on Vietnamese text sources. The proposed framework consists ofimplementation concepts that are needed by a researcher to perform experiments on text discretizationproblems. It covers all the steps and components that are usually part of a completely practical text miningpipeline: acquiring input data, processing, tokenizing it into a vectorial representation, applying machinelearning algorithms, performing the trained models to unseen data, and evaluating their accuracy. Thedevelopment of the framework started with a specific focus on binary text discretization, but soon expandedtoward many other text-categorization-based problems, distributed language modeling and quantification.Several intensive assessments have been investigated to prove the robustness and efficiency of the proposedframework. Resulting in high accuracy (72.99%±3.64) from the experiments, one can conclude that it isfeasible to perform our proposed distributed framework to the task of opinion discretization on Facebook.

Các bài báo khác
Số tạp chí 11(2019) Trang: 18-37
Tạp chí: International Journal of Learning, Teaching and Educational Research
Số tạp chí 35 (1)(2019) Trang: 77-85
Tạp chí: Thalassas: An International Journal of Marine Sciences
Số tạp chí 03(2019) Trang: 214-224
Tạp chí: International Journal of Food Science and Agriculture
Số tạp chí 05(2019) Trang: 1-5
Tạp chí: International Journal of Business Management and Economic Review
Số tạp chí 6(17)(2019) Trang: 1-8(e4)
Tạp chí: EAI Endorsed Transactions on Context-aware Systems and Applications
Số tạp chí 142(2019) Trang:
Tạp chí: Chemical Engineering & Processing: Process Intensification
Số tạp chí Volume 31(10),(2019) Trang: Article 159
Tạp chí: Livestock Research for Rural Development
Số tạp chí VOLUME 8, ISSUE 10, OCTOBER 2019(2019) Trang: 1876-1881
Tạp chí: INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH
Số tạp chí VOLUME 8, ISSUE 10, OCTOBER 2019(2019) Trang: 719-728
Tạp chí: INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH
Số tạp chí 11(2019) Trang: 1-5
Tạp chí: International Journal of Genetics and Molecular Biology
Số tạp chí VOLUME 8, ISSUE 09, SEPTEMBER 2019(2019) Trang: 1612-1616
Tạp chí: INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH
Số tạp chí 24(2019) Trang: 1-5
Tạp chí: Journal of Building Engineering
Số tạp chí 7(2019) Trang: 116-120
Tạp chí: International Journal of Fisheries and Aquatic Studies


Vietnamese | English






 
 
Vui lòng chờ...