Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí trong nước 2020
Số tạp chí 9(2020) Trang: 284-292
Tạp chí: IEIE Transactions on Smart Processing & Computing

Body motion is essential to our daily lives, and partly reflects our health. With the ubiquitous spread of mobile and wearable devices having built-in micro-electro-mechanical system (MEMS) sensors, acquisition of linear acceleration and angular velocity of personal gait is much easier today. These data can reveal different types of human movement as well as possible abnormalities. This study introduces an approach to collecting and processing human gait data, transforming these data into images and leveraging deep learning technique for the classification task. Features of three-dimensional linear acceleration are re-orientated and decomposed into various frequency components and characteristic waveforms by Zao and Lu method. Then, the summary of these characteristic waveforms produces a feature data set with four classes of human gait motion: walking, jogging, climbing upstairs, and going downstairs. We show promising results with the use of a convolutional neural network and a traditional neural network on the refined feature data. From this study, applications such as tele-monitoring, tele-rehabilitation, and assessing sedentary habits can be implemented to diagnose and intervene in human behavior. 

Các bài báo khác
Số tạp chí 81(2020) Trang: 45-51
Tạp chí: Tạp chí Nhân lực khoa học xã hội


Vietnamese | English






 
 
Vui lòng chờ...