Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 16(2024) Trang: 5023–5031
Tạp chí: International Journal of Information Technology

During information technology development in most fields, music also develops rapidly and has many diverse genres. With the increasing number of songs, finding a favorite song becomes more and more complicated when we need help to remember the name or genre of that song clearly. Our study aims to seek songs based on analyzing the characteristics of an audio clip with lyrics or analyzing data about words-key (lyrics) provided by the user. More specifically, this study has attempted three approaches. The first method uses Google Speech to Text Application Programming Interface (API) with the speech recognition library to output text from the user’s audio inputs or to directly enter text to search. Then, we applied the Inverted Index structure to process and store the original lyrics text. The second method is to extract audio features, Mel Frequency Cepstral Coefficients (MFCC), and then leverage the audio-Approximate Nearest Neighbors (ANN) algorithm to support neighborhood search. The third approach is Audio Fingerprint, used to identify and classify audio segments by converting the audio signal into a unique data string, also known as a hash function. The experiments are evaluated on Vietnamese Song. The proposed approach is expected to provide a potential method for Vietnamese music search engines.

Các bài báo khác
Số tạp chí 18(2024) Trang: 5685–5699
Tạp chí: Signal, Image and Video Processing
Số tạp chí 65(2024) Trang: 231-247
Tác giả: Lý Quốc Đẳng
Tạp chí: Asia Pacific Viewpoint
Số tạp chí 13 Dec(2024) Trang: 1-15
Tạp chí: The Educational Forum


Vietnamese | English






 
 
Vui lòng chờ...