Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 2(2023) Trang: 1-16
Tạp chí: PNAS Nexus

In biology, regeneration is a mysterious phenomenon that has inspired self-repairing systems, robots, and biobots. It is a collective computational process whereby cells communicate to achieve an anatomical set point and restore original function in regenerated tissue or the whole organism. Despite decades of research, the mechanisms involved in this process are still poorly understood. Likewise, the current algorithms are insufficient to overcome this knowledge barrier and enable advances in regenerative medicine, synthetic biology, and living machines/biobots. We propose a comprehensive conceptual framework for the engine of regeneration with hypotheses for the mechanisms and algorithms of stem cell-mediated regeneration that enables a system like the planarian flatworm to fully restore anatomical (form) and bioelectric (function) homeostasis from any small- or large-scale damage. The framework extends the available regeneration knowledge with novel hypotheses to propose collective intelligent self-repair machines with multi-level feedback neural control systems driven by somatic and stem cells. We computationally implemented the framework to demonstrate the robust recovery of both form and function (anatomical and bioelectric homeostasis) in an in silico worm that, in a simple way, resembles the planarian. In the absence of complete regeneration knowledge, the framework contributes to understanding and generating hypotheses for stem cell mediated form and function regeneration, which may help advance regenerative medicine and synthetic biology. Further, as our framework is a bio-inspired and bio-computing self-repair machine, it may be useful for building self-repair robots/biobots and artificial self-repair systems.

Các bài báo khác
Số tạp chí 13831(2023) Trang: 93-104
Tạp chí: (LNCS) Computational Data and Social Networks
Số tạp chí 11(2023) Trang: 303-313
Tạp chí: Russian Law Journal
Số tạp chí 72(2023) Trang: 7004411
Tạp chí: IEEE Transactions on Instrumentation and Measurement
Số tạp chí 31(2023) Trang: 825-857
Tạp chí: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Số tạp chí 5(2023) Trang:
Tạp chí: Applied Set-Valued Analysis and Optimization
Số tạp chí 22(2023) Trang: https://worldscientific.com/doi/10.1142/S1469026823500165
Tạp chí: International Journal of Computational Intelligence and Applications
Số tạp chí 1863(2023) Trang:
Tạp chí: Communications in Computer and Information Science
Số tạp chí 6(2023) Trang: 956-963
Tạp chí: International Journal of Multidisciplinary Research and Analysis
Số tạp chí 23(2023) Trang: 271-282
Tạp chí: Scientific Papers. Series “Management, Economic Engineering in Agriculture and Rural Development


Vietnamese | English






 
 
Vui lòng chờ...