Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 22(2023) Trang: https://worldscientific.com/doi/10.1142/S1469026823500165
Tạp chí: International Journal of Computational Intelligence and Applications
Liên kết:

In recent years, with the strong and outstanding development of the Internet, the need to refer to the feedback of previous customers when shopping online is increasing. Therefore, websites are developed to allow users to share experiences, reviews, comments and feedback about the services and products of businesses and organizations. The organizations also collect user feedback about their products and services to give better directions. However, with a large amount of user feedback about certain services and products, it is difficult for users, businesses, and organizations to pay attention to them all. Thus, an automatic system is necessary to analyze the sentiment of a customer feedback. Recently, the well-known pre-trained language models for Vietnamese (PhoBERT) achieved high performance in comparison with other approaches. However, this method may not focus on the local information in the text like phrases or fragments. In this paper, we propose a Convolutional Neural Network (CNN) model based on PhoBERT for sentiment classification. The output of contextualized embeddings of the PhoBERT’s last four layers is fed into the CNN. This makes the network capable of obtaining more local information from the sentiment. Besides, the PhoBERT output is also given to the transformer encoder layers in order to employ the self-attention technique, and this also makes the model more focused on the important information of the sentiment segments. The experimental results demonstrate that the proposed approach gives competitive performance compared to the existing studies on three public datasets with the opinions of Vietnamese people.

Các bài báo khác
Số tạp chí 13831(2023) Trang: 93-104
Tạp chí: (LNCS) Computational Data and Social Networks
Số tạp chí 11(2023) Trang: 303-313
Tạp chí: Russian Law Journal
Số tạp chí 72(2023) Trang: 7004411
Tạp chí: IEEE Transactions on Instrumentation and Measurement
Số tạp chí 31(2023) Trang: 825-857
Tạp chí: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Số tạp chí 5(2023) Trang:
Tạp chí: Applied Set-Valued Analysis and Optimization
Số tạp chí 1863(2023) Trang:
Tạp chí: Communications in Computer and Information Science
Số tạp chí 6(2023) Trang: 956-963
Tạp chí: International Journal of Multidisciplinary Research and Analysis
Số tạp chí 23(2023) Trang: 271-282
Tạp chí: Scientific Papers. Series “Management, Economic Engineering in Agriculture and Rural Development


Vietnamese | English






 
 
Vui lòng chờ...