Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 1950(2023) Trang:
Tạp chí: Communications in Computer and Information Science

A significant environmental problem in Vietnam and around the world is litter and garbage left on the street. The illegal dumping of garbage can have negative consequences on the environment and the quality of human life, as can all forms of pollution, in addition to having a large financial impact on communities. Thus, in order to reduce the impact, we require an automatic litter detecting method. In this study, we propose a new method for spotting illegal trash disposal in surveillance footage captured by real-world cameras. The illegal littering is recognized by a deep neural network. An ordered series of frames makes up a video. The order of the frames carries the temporal information, and each frame contains spatial information. To model both of these features, convolutional layers are used for spatial processing, and instead of using recurrent layers for obtaining temporal information, we take advantage of transformer encoder for encoding sequential data by evaluating each element in the sequence’s relevance. Besides, CNNs is also used to extract important features from images, hence lowering input size without compromising performance. This leads to reduce computational requirements for the transformer. Through testing on actual recordings of various dumping operations, we show that the proposed strategy is effective. Specifically, the validation outcomes from the testing data’s prediction reveal an accurate value of 92.5%, and this solution can be implemented in a real-time monitoring system.

Các bài báo khác
Số tạp chí 13831(2023) Trang: 93-104
Tạp chí: (LNCS) Computational Data and Social Networks
Số tạp chí 11(2023) Trang: 303-313
Tạp chí: Russian Law Journal
Số tạp chí 72(2023) Trang: 7004411
Tạp chí: IEEE Transactions on Instrumentation and Measurement
Số tạp chí 31(2023) Trang: 825-857
Tạp chí: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Số tạp chí 5(2023) Trang:
Tạp chí: Applied Set-Valued Analysis and Optimization
Số tạp chí 22(2023) Trang: https://worldscientific.com/doi/10.1142/S1469026823500165
Tạp chí: International Journal of Computational Intelligence and Applications
Số tạp chí 1863(2023) Trang:
Tạp chí: Communications in Computer and Information Science
Số tạp chí 6(2023) Trang: 956-963
Tạp chí: International Journal of Multidisciplinary Research and Analysis
Số tạp chí 23(2023) Trang: 271-282
Tạp chí: Scientific Papers. Series “Management, Economic Engineering in Agriculture and Rural Development


Vietnamese | English






 
 
Vui lòng chờ...