Optimal power flow (OPF) is one of the common problems in power systems. In general, the branch resistance of the system is assumed to be constant with respect to temperature variation in conventional optimal power flow. However, the temperature correlation of the branch resistance should be taken into account to enhance the accurate calculation of the power flow and branch losses. This paper suggests a new and efficient method, which is chaotic equilibrium optimization (CEO) to deal with the temperature-dependent optimal power flow (TDOPF) problem. The CEO is validated on IEEE 30-bus and 118-bus networks with different objective functions, including generating fuel cost, total active power losses, voltage profile enhancement, voltage stability improvement, and emission reduction. Furthermore, the temperature effect on the TDOPF problem is also analyzed. In the case of fuel cost optimization in the 30-bus network, fuel cost increases from 799.85 $/h to 802.9474 $/h when the temperature increases from 0°C to 100°C, corresponding to a fuel cost increase of 0.04% for each 10°C. From the obtained outcomes, the efficacy of the CEO has been proven in finding accurate solutions for the TDOPF problem.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên