Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2021
Số tạp chí 8(2021) Trang: 238-247
Tạp chí: Communications in Computer and Information Science

In the age of knowledge economy, with deep international integration in all fields, the requirement for competitive human resources becomes increasingly fierce, deciding the success or failure of a country. The competitiveness of human resources depends much on the training process of the education system, notably the higher education level. Therefore, managing and monitoring student learning results are essential for lecturers, particularly the school in general. Early forecasting of students’ learning results is expected to help students choose the suitable modules or courses for their competencies, allowing leaders, administrators, and lecturers in universities and institutes to identify students who need more support to complete their studies successfully. In addition, it contributes to reducing academic warnings or expulsion or suspension due to poor academic performance. Also, this saves time and costs for students, families, schools, and society. This article proposes an approach to enhance student learning performance prediction by applying some deep learning techniques to exploit databases in student management systems at universities in a personalized way. More specifically, we consider personalized training, which means all mark entries of each student are trained separately and apply that trained model to predict scores of courses for themselves. The collected data is analyzed, pre-processed, designed, and prepared with a Long Short-Term Memory network with multiple input variables. Experimental results reveal that the proposed method’s average performance outperforms the method that trains whole datasets with an RMSE of 0.461 with a Multivariate Long Short-Term Memory network.

Các bài báo khác
Số tạp chí 872(2021) Trang: 1-14
Tạp chí: Theoretical Computer Science
Số tạp chí 407(2021) Trang: 126328
Tạp chí: Applied Mathematics and Computation
Số tạp chí 50(2021) Trang: 1-29
Tạp chí: Communications in Statistics-Theory and Methods
Số tạp chí Volume 24(2021) Trang: 1-12
Tạp chí: Journal of Legal, Ethical and Regulatory Issues
Số tạp chí Volume 24, Special Issue 1(2021) Trang: 1-5
Tạp chí: Journal of Legal, Ethical and Regulatory Issues
Số tạp chí 10(2021) Trang: 542-552
Tạp chí: International Journal of Mechanical Engineering and Robotics Research
Số tạp chí 10(2021) Trang: 639-644
Tạp chí: International Journal of Mechanical Engineering and Robotics Research
Số tạp chí 9(2021) Trang: 7-27
Tạp chí: IAFOR Journal of Education: Undergraduate Education


Vietnamese | English






 
 
Vui lòng chờ...