Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2020
Số tạp chí 8(2020) Trang: 60126 - 60141
Tạp chí: IEEE Access

This paper proposed a novel first-order single-valued neutrosophic hesitant fuzzy time series (SVNHFTS) forecasting model. Our aim is to improve the previously proposed neutrosophic time series (NTS) model by incorporating the degree of the hesitancy using single-valued neutrosophic hesitant fuzzy set (SVNHFS) model instead of single-valued neutrosophic set (SVNS). Our paper's novelty is that we incorporate an algorithm that automatically converts the crisp dataset into the neutrosophic set that eliminates the need for experts' input or opinions in determining the membership in each of the partitioned neutrosophic set. We also incorporate Markov Chain algorithm in the de-neutrosophication process to include the weightage of the repeating neutrosophic logical relationships (NLRs). Our paper's significant contribution is to add to the existing body of knowledge related to fuzzy time series (FTS) by developing a new FTS model based on SVNHFS, one of the improved version of fuzzy sets, since this area of research is still relatively underdeveloped. To determine our proposed model's capability, we apply our proposed SVNHFTS model to three real datasets while also comparing the result to the other FTS models based on improved versions of fuzzy sets. Our datasets include benchmark enrollment data of University of Alabama, IDX Composite (Indonesian composite stock index), and MERVAL index (Argentinian composite stock index). The result shows that our proposed SVNHFTS model outperforms most of the other FTS models in terms of AFE and RMSE, especially the previously proposed NTS model.

Các bài báo khác
Số tạp chí 7(2020) Trang: 548-552
Tạp chí: International Journal of Research and Review
Số tạp chí 4(2020) Trang: 525-527
Tạp chí: International Journal of Trend in Scientific Research and Development
Số tạp chí 8(2020) Trang: 250-256
Tác giả: Lý Hồng Thái
Tạp chí: The International Journal of Humanities & Social Studies
Số tạp chí 5(2020) Trang: 393-397
Tạp chí: International Journal of Trend in Scientific Research and Development
Số tạp chí 7(2020) Trang: 263-267
Tạp chí: International Journal of Research and Scientific Innovation
Số tạp chí 7(2020) Trang: 1465-1473
Tạp chí: European Journal of Molecular and Clinical Medicine
Số tạp chí 16(2020) Trang: 10(18)
Tạp chí: International Journal of Data Warehousing and Mining
Số tạp chí 16(2020) Trang: 44-62
Tạp chí: International Journal of Data Warehousing and Mining
Số tạp chí 5(2020) Trang: 363-369
Tạp chí: Advances in Science, Technology and Engineering Systems Journal
Số tạp chí 7(2020) Trang: 357-366
Tạp chí: Journal of Asian Finance, Economics and Business
Số tạp chí 7(2020) Trang: 303-315
Tạp chí: Journal of Asian Finance, Economics and Business
Số tạp chí 13(2020) Trang: 701-735
Tạp chí: International Journal of Procurement Management
Số tạp chí 250(2020) Trang:
Tạp chí: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Số tạp chí 4(2020) Trang: 319336
Tác giả: Lê Thanh Tùng
Tạp chí: Journal of Nonlinear and Variational Analysis
Số tạp chí Tran Khanh DangJosef KüngMakoto TakizawaTai M. Chung(2020) Trang: 151-166
Tạp chí: Lecture Notes in Computer Science


Vietnamese | English






 
 
Vui lòng chờ...