Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
In: Ngoc Thanh Nguyen · Siridech Boonsang · Hamido Fujita · Bogumiła Hnatkowska · Tzung-Pei Hong · Kitsuchart Pasupa · Ali Selamat (2023) Trang: 45-57
Tạp chí: Lecture Notes in Computer Science

The examination evaluates the learners’ ability to achieve a specific goal, representing a crucial assessment of the knowledge acquired during the learning process. To attain success in the examination, it is imperative to prevent cheating in the examination hall. Despite this, cheating still occurs due to the limited availability of human resources. Therefore, we have collected surveillance videos of examination halls from a high school in Vietnam to analyze and implement deep learning architectures such as You Only Look Once (YOLO) and Single Shot Detector (SSD) MobileNet V2 to detect anomalous behavior among students during the examination. Our study focuses on detecting five common abnormal behaviors, including looking around, bending over the desk, putting one or two hands under the table, waving, and standing up. YOLO achieved the best results, with a performance of 83.55%, 99.65%, 97%, 99.2%, and 98.0866% in Intersection over Union (IoU), Mean Average Precision (mAP), Precision, Recall, and F1-Score, respectively, across 2639 images. This approach is expected to assist educators and teachers in detecting and preventing cheating activities in examination rooms.

Các bài báo khác
In: Leonard Barolli (2024) Trang: 106-118
Tạp chí: Lecture Notes on Data Engineering and Communications Technologies
In: Thi Dieu Linh Nguyen · Elena Verdú · Anh Ngoc Le · Maria Ganzha (2023) Trang: 418-425
Tạp chí: Lecture Notes in Networks and Systems
 


Vietnamese | English






 
 
Vui lòng chờ...