Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2015) Trang: 15-22
Tạp chí: GMSARN International Journal

To enhance electrical energy production and improve heat insulation of photovoltaic modules (original solar glass module), a simple method for installation and generation of heat insulation solar glass (HISG) modules from traditional transparent PV modules (original solar glass modules) using heat insulation materials, improving functions such as power generation, heat insulation, energy saving and greenhouse gas reducing. Interest in photovoltaics (PV) integration into buildings, as well as heat insulation solar glass (HISG) be used as curtain walls on the buildings has been developed, where the HISG curtain walls play the role of building exterior components as an integral part of buildings as well as of producing electricity and providing functions such as heat insulation and selfcleaning. Two experimental houses used normal glass and HISG as curtain walls on the Ordinary house and the HISG house were constructed in this study. Results show that the illuminative penetration on HISG curtain was quietly high with efficiency of 32%, block UV-rays to 100%, low solar radiation 40% as compared to normal glass curtain wall (~97%), greatly enhanced indoor lighting ~29.4% and high heat insulation efficiency ~28.2% as compared to normal glass curtain wall on the Ordinary house. In addition, the energy-saving efficiency of the HISG house for heating and cooling were greatly improved respective to ~40% and 48% for comparisons to the Ordinary house, and the power generation of HISG curtain wall on the HISG house was achieved 2.63 kWh of electricity per day. Our work offers a low-cost route to the application of HISG modules able to be used for monitoring progression of the greenhouse gas reduction, as well as evaluating their energy efficiency on buildings in the green buildings at the current and future.

Các bài báo khác
Số 04 (2016) Trang: 46-51
Tải về
Số 03 (2016) Trang: 61-70
Tải về
Vol. 11, No. 1 (2019) Trang: 64-69
Tải về
Vol. 54, No. 8 (2018) Trang: 96-104
Tải về
35 (2015) Trang: 173-179
Tạp chí: THE 2nd INTERNATIONAL CONFERENCE ON CHEMICAL ENGINEERING, FOOD AND BIOTECHNOLOGY – ICCFB2015
 


Vietnamese | English






 
 
Vui lòng chờ...