Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Tran Khanh Dang, Josef Küng, Tai M. Chung, Makoto Takizawa (2021) Trang: 375–386
Tạp chí: Communications in Computer and Information Science

Metagenomics analysis has increased its importance in medicine with numerous recent research to investigate and explore the association of metagenomic data to human disease. Discretization approaches are proven as efficient tools to improve the disease predic- tion performance on metagenomic data. This study proposes a technique based on Entropy and combining some scaler algorithms to conduct bins for discretizing metagenomic data to perform disease classification tasks. Our disease prediction results on six bacterial species abundance metage- nomic datasets with the discretization method based on Entropy have revealed promising results compared to the Equal Width Binning with AUCs of 0.955, 0.826, 0.893, 0.692, 0.798, 0.765 classified by a One- dimensional Convolutional Neural Network on data including samples related to Liver Cirrhosis, Colorectal Cancer, Inflammatory Bowel Dis- ease (IBD), and two datasets of Type 2 Diabetes (namely, T2D, and WT2D), respectively.

Các bài báo khác
Tran Khanh Dang, Josef Küng, Makoto Takizawa, Tai M. Chung (2020) Trang: 294-308
Tạp chí: Communications in Computer and Information Science book series
 


Vietnamese | English






 
 
Vui lòng chờ...