The trading of stock in companies holds an important part in numerous economies. Stock Forecast which is popularly published in the public domain in the forms of newsletters, investment promotion organizations, public/private forums, and scientific forecast services is very necessary to contribute successes in financial for individuals or organizations. Leveraging advancements in machine learning, we propose an approach based on Long Short-Term Memory model and compare the performance to the classic machine learning such as Random Forest model and Support Vector Regression model when we do forecast tasks on Taiwanese stock market. The proposed method with deep learning algorithm shows better performance comparing to the classic machine learning in the tasks of forecasting the stock market in Taiwan.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên