Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Nguyen Thai-Nghe, Thanh-Nghi Do, Peter Haddawy (2023) Trang: 204–211
Tạp chí: Communications in Computer and Information Science

Recognizing traffic signs is essential in guaranteeing traffic safety and reducing the risk of traffic accidents. This study proposes a deep learning-based approach that attempts various YOLO architecture versions to perform common traffic sign recognition in Vietnam. First, data collection is conducted by collecting images taken on roads in Can Tho City and Vinh Long province and then combining them with ZaloAI dataset of Vietnamese traffic signs in 2020. Next, a data augmentation process is deployed to form an enhancement dataset. Then, two versions of YOLO, the YOLOv5 model and the YOLOv8 model, are applied to the enhancement dataset for recognizing traffic signs and comparing the effectiveness of the two approaches. The experimental results show that although the YOLOv5 model takes more training time and has fewer parameters than the YOLOv8 model, the former can perform better in traffic sign recognition tasks.

Các bài báo khác
Phan Cong VinhAbdur Rakib (2020) Trang: 192-202
Tạp chí: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series
 


Vietnamese | English






 
 
Vui lòng chờ...