The current study explores the empirical whole stress-strain curves detected from the axial compression test of the green concretes manufactured with two kinds of no-cement binders. The first one is the binder of alkali-activated material (AAM) with ground granulated blast furnace slag blending with Class F fly ash (FFA) and the second is a new hydraulic SFC binder produced by mixing ternary powders of slag (S), FFA (F), and circulating fluidized bed combustion fly ash (C). The performances of two green concretes were conducted and compared with that of the plain ordinary Portland cement (OPC) concretes with the equivalent 28-day compressive strengths graded at 30, 40, and 50 MPa. Experimental results showed that the AAM concretes had the energy absorption capacity lower than those of the SFC and OPC concretes because the descending parts of the whole stress-strain curves of the AAM concretes referred to the snap back mode different from the strain softening modes of those of the SFC and OPC concretes with the compressive strength graded at 30 or 40 MPa. Among three concretes with equivalent strength grades, the AAM concretes had the lowest elastic Young’s moduli and the highest Poisson’s ratios. The SFC concretes had the comparable or slightly higher elastic Young’s moduli and lower Poisson’s ratios than those of the OPC concretes.
Tạp chí: Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2016 (2016)
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên